WASTE STREAM 9F17 Sludge

SITE	Sizewell A			
SITE OWNER	Nuclear Decommissioning Authority			
WASTE CUSTODIAN	Magnox Limited			
WASTE TYPE	LLW			
Is the waste subject to Scottish Policy:	No			
WASTE VOLUMES		Reported		
Stocks:	At 1.4.2022	12.8 m³		
Total future arisings:		0 m³		
Total waste volume:		12.8 m³		
Comment on volumes:	These volumes do not include pond sludge.			
Uncertainty factors on	Stock (upper): x 1.2		Arisings (upper)	x
volumes:	Stock (lower): x 0.8		Arisings (lower)	х
WASTE SOURCE	The sludge originates from routine fi treatment and from clean-up operation / associated storage tanks. There is active filter.	ltration of liquons of the co also a limited	uid effluents and co poling ponds and Ef d amount of paper t	ooling pond water fluent Treatment Plan filters from the final

PHYSICAL CHARACTERISTICS

General description:	The waste consists of debris washed from persons, corrosion products such as magnesium hydroxide and carbonate detached from fuel elements and extraneous materials such as flakes of paint. Also there is some filter sand. Sludge particles may be up to millimetre size, and there will probably be 50-450 kg/m3 of solid material. Once fluidised the sludges should be readily transferred by pumping but reconcentration may be time consuming. There is also paper present in the form of filter circles from the final active filter. There are no large items that may require special handling. However, consideration must be given to how the filter paper will be removed.
Physical components (%vol):	Sludge (>97%) and paper (<3%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	1.4
Comment on density:	-

CHEMICAL COMPOSITION

General description and components (%wt):	Magnesium hydroxide, magnesium carbonate, water, sand and a wide variety of other materials. There are small quantities of steel, PVC and paper.
Chemical state:	Alkali
Chemical form of radionuclides:	 H-3: Chemical form of tritium has not been assessed but may be present as water or as other inorganic compounds or as organic compounds. C-14: The chemical form of carbon 14 has not been determined. Cl-36: The chemical form of chlorine 36 has not been determined. Se-79: The chemical form of selenium has not been determined. Tc-99: The chemical form of technetium has not been determined. Ra: The chemical form of radium isotopes has not been determined. The thorium isotope content is insignificant. U: The chemical form of uranium isotopes has not been determined. Np: The chemical form of neptunium has not been determined. Pu: The chemical form of plutonium isotopes has not been determined.
Metals and alloys (%wt):	No bulk metal items present.

WASTE STREAM 9F17 Sludge			
	(%wt)	Type(s) / Grade(s) with proportions	% of total C14
Stainless steel	0		activity
Other ferrous metals	<0.50		
Iron			
Aluminium	NE		
Beryllium	NE		
Cobalt			
Copper	NE		
Lead	NE		
Magnox/Magnesium	<10.0	Some unreacted Magnox may be present.	
Nickel			
Titanium			
Uranium			
Zinc	NE		
Zircaloy/Zirconium	NE		
Other metals	NE	The presence of "other" metals has not been fully assessed.	
quantities of PVC ar	e present (%wt)	(<0.1% wt). Type(s) and comment	% of total C14
Total cellulosics	<3.0		activity
Paper, cotton	<3.0		
Wood	0		
Halogenated plastics	<0.10	PVC	
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	TR		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	NE		

WASTE STREAM 9F17

Sludge

(%wt)

Type(s) and comment

% of total C14	ŀ
activity	

Inorganic ion exchange materials	0
Inorganic sludges and flocs	~97.0
Soil	0
Brick/Stone/Rubble	TR
Cementitious material	TR
Sand	
Glass/Ceramics	0
Graphite	TR
Desiccants/Catalysts	
Asbestos	0
Non/low friable	
Moderately friable	
Highly friable	
Free aqueous liquids	Ρ
Free non-aqueous liquids	NE
Powder/Ash	0

Inorganic anions (%wt):

Not fully assessed. Carbonates and sulphates may be present.

(%wt)

Type(s) and comment

Fluoride	NE
Chloride	NE
lodide	NE
Cyanide	0
Carbonate	NE
Nitrate	NE
Nitrite	NE
Phosphate	NE
Sulphate	NE
Sulphide	NE

Materials of interest for waste acceptance criteria:

The waste is unlikely to present a fire hazard but this requires confirmation since Magnox may be present and can ignite under appropriate conditions. There might be trace quantities of biological material. The possible presence of items that are not estimated is to be determined.

	(%wt)	Type(s) and comment
Combustible metals	<10.0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	TR	
Biodegradable materials	0	
Putrescible wastes	0	

2022 Inventory

WASTE STREAM 9F17 Sludge

Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	NE
Reacting with water	<10.0
Higher activity particles	
Soluble solids as bulk chemical compounds	

-

Hazardous substances / non hazardous pollutants:

Acrylamide
Benzene
Chlorinated solvents
Formaldehyde
Organometallics
Phenol
Styrene
Tri-butyl phosphate
Other organophosphates
Vinyl chloride
Arsenic
Barium
Boron
Boron (in Boral)
Boron (non-Boral)
Cadmium
Caesium
Selenium
Chromium
Molybdenum
Thallium
Tin
Vanadium
Mercury compounds
Others
Electronic Electrical Equipment (EEE)
EEE Type 1
EEE Type 2
ЕЕЕ Туре 3
ЕЕЕ Туре 4
ЕЕЕ Туре 5

(%wt)

0

Type(s) and comment

Complexing agents (%wt):

	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	NE	

Potential for the waste to contain discrete items: No. In & of itself not a DI; assumed not likely to contain any "rogue" items that could be.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):	Treatment	On-si Off s	te / site	Stream volume %
	Low force compaction			
	Supercompaction (HFC)			
	Incineration			
	Solidification	On-	site	100.0
	Decontamination			
	Metal treatment			
	Size reduction			
	Decay storage			
	Recyling / reuse			
	Other / various			
	None			
Comment on planned treatments:	Waste will be mixed in a cementitious matrix and drums, for disposal in a half-height ISO container.	solidified i	n nomina	l 210-litre
Disposal Routes:	Disposal Route			Disposal 6 density t/m3
	Expected to be consigned to the LLW Repository			2.4
	Expected to be consigned to a Landfill Facility			
	Expected to be consigned to an On-Site Disposa			
	Expected to be consigned to an Incineration Fac			
	Expected to be consigned to a Metal Treatment Facility			
	Expected to be consigned as Out of Scope			

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Expected to be recycled / reused Disposal route not known

Disposal Route	Stream volume %				
	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

-

WASTE STRE	AM 9F17	Sludge			
Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

Waste Packaging for Disposal:

Container	Stream volume	Waste loading	Number of
	%	m ³	packages
 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other 	100.0	~2.4	6

Other information:

Waste Planned for Disposal at the LLW Repository:

-

Container voidage:	No significant inaccessible voidage is expected.				
Waste Characterisation Form (WCH):	-				
Waste consigned for disposal to LLWR in year of generation:	No. waste will be retrieved from tanks for processing and disposal when AETP decommissioned				

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

-
-
-
-

RADIOACTIVITY

Source:	Contaminated sludge. Contamination by fission products, actinides and activation products.
Uncertainty:	Specific activity is a function of Station operating history.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	The values quoted were derived by extrapolation from available measurements and are indicative of the activities that might be expected.
Other information:	-

WASTE STREAM 9F17 Sludge

	Mean radioactivity, TBg/m ³				Mean radioactivity, TBq/m ³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
Н 3	2.16E-05	CC 2			Gd 153		8		
Be 10		8			Ho 163		8		
C 14	7.38E-06	CC 2			Ho 166m		8		
Na 22		8			Tm 170		8		
AI 26		8			Tm 171		8		
CI 36		8			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41		8			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		8			Pb 205		8		
Fe 55	6.69E-06	CC 2			Pb 210		8		
Co 60	1.22E-05	CC 2			Bi 208		8		
Ni 59		8			Bi 210m		8		
Ni 63		8			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90	1.60E-04	CC 2			Th 227		8		
Zr 93		8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232		8		
Nb 94		8			Th 234		8		
Mo 93		8			Pa 231		8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106	5.19E-07	CC 2			U 233		8		
Pd 107		8			U 234	1.99E-09	CC 2		
Ag 108m		8			U 235		8		
Ag 110m		8			U 236		8		
Cd 109		8			U 238		8		
Cd 113m		8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238	7.72E-05			
Sn 123		8			Pu 239	4.31E-05			
Sn 126	4 05 00	8			Pu 240	4.31E-05			
SD 125	1.2E-06				Pu 241	1.76E-03			
SD 126	2015 07	ъ СС о			Pu 242		×		
Te 125m	3.01E-07				Am 241	1.12E-04			
		0			Am 242111		Ö		
1 129 Co 124					Am 243		0 0		
CS 134	0.30E-00				Cm 242		0		
Cs 135	1 595 02				Cm 243		0		
CS 137 Bo 133	4.30E-03				Cm 244		0		
Da 133		0			Cm 245		0		
La 13/		O Q			Cm 240		O Q		
Co 144	2 805-08				Cf 240		0 8		
Pm 1/5	2.032-00	Q 2			Cf 250		U Q		
Pm 147	4.34E-07	00.2			Cf 251		о Я		
Sm 147	4.04L-07	оо 2 я			Cf 252		R R		
Sm 151	6 02E-05				Other a		U		
511 151 Fu 152	0.020-00				Other b/a		CC 2		
Eu 152	1 42F-05				Total a	2 755-04	CC 2	•	
Eu 154	1.722-00				Total b/a	2.1 JE-04		0	
Lu 155	4.7 JL-00	00 2			i utai b/y	0.046-03	00 2	v	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
 8 Not expected to be present in significant quantity

8 Not expected to be present in significant quantity