SITE Sizewell A

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE LLW

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported

Stocks: At 1.4.2022...... 48.0 m³

Total future arisings: 0 m³

Total waste volume: 48.0 m³

Comment on volumes: -

Uncertainty factors on Stock (upper): x 1.2 Arisings (upper) x volumes: Stock (lower): x 0.8 Arisings (lower) x

WASTE SOURCE The waste is redundant equipment and material usually arising from reactor operation,

irradiated fuel handling and pond operations.

PHYSICAL CHARACTERISTICS

General description: The majority of drummed waste is contained in 120-litre drums with a small percentage in

200-litre drums. There are no large items. Special handling requirements have not been

assessed.

Physical components (%vol): Drummed combustible (100%).

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): 0.4

Comment on density: The bulk density of the waste ranges from 0.2 t/m³ to 0.5 t/m³.

CHEMICAL COMPOSITION

General description and

components (%wt):

A mixture of combustible materials in 120-litre and 200-litre steel drums. Waste generally

comprises paper, cloth, wood, steel, glass and polythene bags.

Chemical state: Neutra

Chemical form of radionuclides:

H-3: The chemical form of tritium may be water or other inorganic or organic compounds.

C-14: The chemical form of carbon 14 may be graphite.

CI-36: The chemical form of chlorine 36 has not been determined.

Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium isotope content is insignificant. Th: The thorium isotope content is insignificant.

U: The chemical form of uranium isotopes has not been determined but may be uranium

oxides.

Np: The neptunium content is insignificant.

Pu: The chemical form of plutonium isotopes has not been determined but may be

plutonium oxides.

Metals and alloys (%wt): Approximately 45% by weight is mild steel drums of 1 mm thickness.

(%wt) Type(s) / Grade(s) with proportions % of total C14

activity

Stainless steel...... 0

Other ferrous metals.....~45.0

Iron.....

Aluminium......<0.10

Beryllium..... 0

Cobalt.....

	Copper	<0.10		
	Lead			
	Magnox/Magnesium		Trace amounts of Magney possible	
	พลงแองพลงแองเนา	11	Trace amounts of Magnox possible due to contamination with fuel.	
	Nickel			
	Titanium			
	Uranium			
	Zinc	0		
	Zircaloy/Zirconium	. 0		
	Other metals	. 0	There are no "other" metals present.	
Organics (e waste incl	penated plastic present as polythene. The ludes cellulosic materials. Halogenated r e.	
		(%wt)	Type(s) and comment	% of total C14
	Total cellulosics	~45.0		activity
	Paper, cotton	~30.0		
	Wood	~15.0		
	Halogenated plastics	NE		
	Total non-halogenated plastics	~5.0		
	Condensation polymers	NE		
	Others	~5.0	Non-halogenated plastic present as polythene.	
	Organic ion exchange materials	0		
	Total rubber	NE		
	Halogenated rubber	NE	Possibly viton and neoprene	
	Non-halogenated rubber	NE		
	Hydrocarbons			
	Oil or grease	TR		
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	TR		
Other mate	erials (%wt): -			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		,
	Inorganic sludges and flocs	0		
	Soil	0		
	Brick/Stone/Rubble	0		
	Cementitious material	0		
	Sand			
	Glass/Ceramics	0		

Graphite	0	
Desiccants/Catalysts		
Asbestos	0	
Non/low friable		
Moderately friable		
Highly friable		
Free aqueous liquids	0	
Free non-aqueous liquids	TR	
Powder/Ash	NE	
Inorganic anions (%wt): Not fully assessed a	Ithough it is	s recognised that carbonates will be present.
	(%wt)	Type(s) and comment
Fluoride	NE	
Chloride	NE	
lodide	NE	
Cyanide	0	
Carbonate	NE	
Nitrate	NE	
Nitrite	NE	
Phosphate	NE	
Sulphate	NE	
Sulphide	NE	
	robable. Ho	erials likely to represent a fire or other non-radiological owever, it should be recognised that some of the waste is urce of ignition.
	(%wt)	Type(s) and comment
Combustible metals	TR	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials	0	
Putrescible wastes	0	
Non-putrescible wastes		

0

TR

Corrosive materials.....

Pyrophoric materials.....

Generating toxic gases......

Reacting with water.....

Higher activity particles......

Soluble solids as bulk chemical compounds.....

Hazardous substances / non hazardous pollutants:

Complexing

Lead might be present but in very small quantities, if any.

	(%Wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron	0	
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
agents (%wt): No		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	0	

Potential for the waste to contain discrete items:

Not yet determined. n/a, DI concept applies only to Disposal at LLWR; by definition LLWR will not accept materials suitable for Incineration

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration	Off-site	55.0
Solidification		
Decontamination		
Metal treatment	Off-site	45.0
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		

Comment on planned treatments:

It is expected that 45% of this waste stream will be sent for Metal Recycling

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	55.0 45.0	0.40 1.4

Classification codes for waste expected to be consigned to a landfill facility:

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Opportunity Stream Date that Opportunity Management Route Management Route volume (%) Stream Opportunity Opportunity Confidence will be realised
--

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages	
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other				

Other information: -

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage: -

Waste Characterisation

Form (WCH):

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Combustible wastes. Components that have been associated with fuel route operations

are likely to be of high activity.

Uncertainty: The values quoted are indicative of the activities that are expected.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Figures were derived by estimation based upon available information.

Other information: Specific activity is a function of Station operating history.

	Mean radioactivity, TBq/m³		Mean radioactivity, TBq/m³						
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide		Bands and Code	Future arisings	Bands and Code
H 3	1.72E-04	CC 2			Gd 153		8		
Be 10		8			Ho 163		8		
C 14	2.00E-05	CC 2			Ho 166m		8		
Na 22		8			Tm 170		8		
Al 26	55.05	8			Tm 171		8		
CI 36	5E-05	CC 2			Lu 174		8		
Ar 39 Ar 42		8 8			Lu 176 Hf 178n		8 8		
K 40		8			Hf 182		8		
Ca 41		8			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		8			Pb 205		8		
Fe 55	1.97E-06	CC 2			Pb 210		8		
Co 60	6.94E-06	CC 2			Bi 208		8		
Ni 59		8			Bi 210m		8		
Ni 63	4.50E-05	CC 2			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90	1.39E-04	CC 2			Th 227		8		
Zr 93		8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232	7F 00	8		
Nb 94 Mo 93		8 8			Th 234 Pa 231	7E-08	CC 2 8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234	7.00E-08	CC 2		
Ag 108m		8			U 235		8		
Ag 110m		8			U 236		8		
Cd 109		8			U 238	7E-08	CC 2		
Cd 113m		8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238	1.78E-06	CC 2		
Sn 123		8			Pu 239	3E-06	CC 2		
Sn 126		8			Pu 240	3.00E-06	CC 2		
Sb 125		8			Pu 241	3.88E-05	CC 2		
Sb 126		8			Pu 242		8		
Te 125m		8			Am 241	1.12E-05	CC 2		
Te 127m		8			Am 242m		8		
I 129 Cs 134	6.50E-09	8 CC 2			Am 243 Cm 242		8 8		
Cs 134	0.301-09	8			Cm 242	4.25E-09	CC 2		
Cs 137	2.13E-04	CC 2			Cm 244	4.23E-09 4.51E-08	CC 2		
Ba 133	1.12E-08	CC 2			Cm 245	1.012 00	8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145		8			Cf 250		8		
Pm 147	7.60E-09	CC 2			Cf 251		8		
Sm 147		8			Cf 252		8		
Sm 151		8			Other a				
Eu 152	9.18E-08	CC 2			Other b/g				
Eu 154	1.19E-07	CC 2			Total a	1.91E-05	CC 2	0	
Eu 155	8.33E-09	CC 2			Total b/g	6.87E-04	CC 2	0	
L	-		-			-		-	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in

mean radioactivity.

Code

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined
- 8 Not expected to be present in significant quantity