SITE Sizewell A

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE LLW; SPD3

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported

Stocks: At 1.4.2022...... 12.7 m³

Total future arisings: 0 m³

Total waste volume: 12.7 m³

Comment on volumes: Wastes are expected to be retained until Final Site Clearance.

Uncertainty factors on Stock (upper): x 1.1 Arisings (upper) x volumes: Stock (lower): x 0.9 Arisings (lower) x

WASTE SOURCE The waste consists of used shield cooling air filter elements.

PHYSICAL CHARACTERISTICS

General description: Shield cooling filter elements about 0.5 m diameter x 2 m long and weighing ~0.2 t. The

filter elements are double wrapped in polythene. Special handling requirements have not

been assessed. Items are about 0.5 m diameter x 2 m long and weigh ~0.2 t.

Physical components (%vol): 100% shield cooling air filter elements.

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m³): ~0.5

Comment on density: The bulk density of the waste is about 0.5 t/m?.

CHEMICAL COMPOSITION

General description and components (%wt):

Air filters consisting of rolls of glass fibre (9%) on metal spindles (90%). Chemical

compositions not fully assessed. Polythene wrapping material (~1%).

Chemical state: Neutral

Chemical form of radionuclides:

H-3: The chemical form of tritium has not been determined.

C-14: The chemical form of carbon 14 has not been determined.

CI-36: The chemical form of chlorine 36 has not been determined.

Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium isotope content is insignificant. Th: The thorium isotope content is insignificant. U: The uranium isotope content is insignificant. Np: The neptunium content is insignificant.

Pu: The plutonium isotope content is insignificant.

Metals and alloys (%wt): The waste includes metal spindles which are about 2 m long. These spindles are expected

to be disposed of as non-active waste.

(%wt) Type(s) / Grade(s) with proportions % of total C14 activity

Stainless steel...... 0

Other ferrous metals..... ~90.0

Iron.....

Aluminium...... 0

Beryllium...... 0

Cobalt.....

Copper...... 0
Lead...... 0

	Magnox/Magnesium	0		
	Nickel			
	Titanium			
	Uranium			
	Zinc	0		
	Zircaloy/Zirconium	0		
	Other metals	0	No "other" metals present.	
Organics (%		kpected ir	n trace quantities. Halogenated plastics	and rubbers are not
	present.			
		(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics	0		,
	Paper, cotton	0		
	Wood	0		
	Halogenated plastics	0		
	Total non-halogenated plastics	~1.0		
	Condensation polymers	0		
	Others	~1.0	Polythene wrapping material (~1%).	
	Organic ion exchange materials	0		
	Total rubber	0		
	Halogenated rubber	0		
	Non-halogenated rubber	0		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			
	Others			
	Other organics	TR		
Other mater	rials (%wt):			
		(%wt)	Type(s) and comment	% of total C14 activity
	Inorganic ion exchange materials	0		activity
	Inorganic sludges and flocs	0		
	Soil	0		
	Brick/Stone/Rubble	0		
	Cementitious material	0		
	Sand			
	Glass/Ceramics	9.0	glass fibre	
	Graphite	0		
	Desiccants/Catalysts			
	Asbestos	0		

	Non/low friable		
	Moderately friable		
	Highly friable		
	Free aqueous liquids	0	
	Free non-aqueous liquids	0	
	Powder/Ash	TR	
Inorganic ani	ons (%wt): Not fully assessed.		
		(%wt)	Type(s) and comment
		(7000)	Type(3) and comment
	Fluoride	NE	
	Chloride	NE	
	lodide	NE	
	Cyanide	0	
	Carbonate	NE	
	Nitrate	NE	
	Nitrite	NE	
	Phosphate	NE	
	Sulphate	NE	
	Sulphide	NE	
Materials of i	nterest for - cance criteria:		
waste accept	anoc omena.	(0/ 1)	- /> .
		(%wt)	Type(s) and comment
	Combustible metals	0	
	Low flash point liquids	0	
	Explosive materials	0	
	Phosphorus	0	
	Hydrides	0	
	Biological etc. materials	0	
	Biodegradable materials		
	Putrescible wastes	0	
	Non-putrescible wastes		
	Corrosive materials	0	
	Pyrophoric materials	0	
	Generating toxic gases	0	
	Reacting with water	0	
	Higher activity particles		
	Soluble solids as bulk chemical compounds		
Hazardous s non hazardo	ubstances / None expected. us pollutants:		
		(%wt)	Type(s) and comment
	Acrylamide		
	Benzene		

Chlorinated solvents			
Formaldehyde			
Organometallics			
Phenol			
Styrene			
Tri-butyl phosphate			
Other organophosphates			
Vinyl chloride			
Arsenic			
Barium			
Boron			
Boron (in Boral)			
Boron (non-Boral)			
Cadmium			
Caesium			
Selenium			
Chromium			
Molybdenum			
Thallium			
Tin			
Vanadium			
Mercury compounds			
Others			
Electronic Electrical Equipment (EEE)			
EEE Type 1			
EEE Type 2			
EEE Type 3			
EEE Type 4			
EEE Type 5			
agents (%wt): No			
	(%wt)	Type(s) and comment	
EDTA			
DPTA			
NTA			
Polycarboxylic acids			
Other organic complexants			
Total complexing agents	0		
the waste to Yes Targe Metal It	ems (I MI	s)/"substantial" thickness it	tame considers

Potential for the waste to contain discrete items:

Complexing

Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; Stainless items assumed DIs.

TREATMENT, PACKAGING AND DISPOSAL

Planned on-site / off-site treatment(s):

Treatment	On-site / Off site	Stream volume %
Low force compaction		
Supercompaction (HFC)		
Incineration		
Solidification		
Decontamination		
Metal treatment		
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		100.0

Comment on planned treatments:

It is expected that the metal spindles will be removed and disposed as non-active waste.

Disposal Routes:

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility	10.0	
Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known	90.0	

Classification codes for waste expected to be consigned to a landfill facility:

17 04 05, 17 06 03*

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Route	Stream volume %				
Disposal Noute	2022/23	2023/24	2024/25		
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known					

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment

Waste Packaging for Disposal: (Not applicable to this waste stream)

Container	Stream volume %	Waste loading m ³	Number of packages
1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other			

Other information:

Waste Planned for Disposal at the LLW Repository: (Not applicable to this waste stream)

Container voidage:

Waste Characterisation

Form (WCH):

ii (vv Ci i).

Waste consigned for disposal to LLWR in year of generation:

Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream)

Stream volume (%):

Waste stream variation: -

Bounding cuboidal volume:

Inaccessible voidage: -

Other information:

RADIOACTIVITY

Source: Particulates collected by the filters.

Uncertainty: Activities are expected to be very low. There is a strong possibility that this waste will be

VLLW, but this cannot be confirmed until retrieval.

Definition of total alpha

and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

Activities have been calculated from available information.

Other information: Specific activity is a function of Station operating history.

	Mean radioactivity, TBq/m³				Mean radioactivity, TBq/m³				
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and
-	1.4.2022	Code	arisings	Code		1.4.2022	Code	arisings	Code
H 3	1.85E-07	CC 2			Gd 153		8		
Be 10	4.005.00	8			Ho 163		8		
C 14	4.99E-08	CC 2			Ho 166m Tm 170		8		
Na 22		8					8		
Al 26	05.00	8			Tm 171		8		
CI 36	9E-08	CC 2			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42 K 40		8 8			Hf 178n Hf 182		8 8		
Ca 41		8			Pt 193		8		
Mn 53		8			TI 204		8		
Mn 54		8			Pb 205		8		
Fe 55		8			Pb 210		8		
Co 60	3.16E-09	CC 2			Bi 208		8		
Ni 59		8			Bi 210m		8		
Ni 63	1.73E-07	CC 2			Po 210		8		
Zn 65		8			Ra 223		8		
Se 79		8			Ra 225		8		
Kr 81		8			Ra 226		8		
Kr 85		8			Ra 228		8		
Rb 87		8			Ac 227		8		
Sr 90		8			Th 227		8		
Zr 93		8			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92		8			Th 230		8		
Nb 93m		8			Th 232		8		
Nb 94		8			Th 234		8		
Mo 93		8			Pa 231		8		
Tc 97		8			Pa 233		8		
Tc 99		8			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234		8		
Ag 108m		8			U 235		8		
Ag 110m Cd 109		8			U 236 U 238		8 8		
Cd 109		8 8			Np 237		8		
Sn 119m		8			Pu 236		8		
Sn 121m		8			Pu 238		8		
Sn 123		8			Pu 239		8		
Sn 126		8			Pu 240		8		
Sb 125		8			Pu 241		8		
Sb 126		8			Pu 242		8		
Te 125m		8			Am 241		8		
Te 127m		8			Am 242m		8		
I 129		8			Am 243		8		
Cs 134		8			Cm 242		8		
Cs 135		8			Cm 243		8		
Cs 137		8			Cm 244		8		
Ba 133		8			Cm 245		8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145		8			Cf 250		8		
Pm 147		8			Cf 251		8		
Sm 147		8			Cf 252		8		
Sm 151		8			Other a				
Eu 152		8			Other b/g	_		_	
Eu 154		8			Total a	0	00 -	0	
Eu 155	<u> </u>	8	<u> </u>		Total b/g	5.00E-07	CC 2	0	

Bands (Upper and Lower)

A a factor of 1.5
B a factor of 3
C a factor of 10
D a factor of 100
E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)

- 4 Not present
 5 Present but not significant
 6 Likely to be present but not assessed
 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity