SITE Wvlfa

SITE OWNER **Nuclear Decommissioning Authority**

WASTE CUSTODIAN Magnox Limited

ILW WASTE TYPE

Is the waste subject to

Scottish Policy:

No

WASTE VOLUMES

Reported Stocks: At 1.4.2022..... $0 \, \text{m}^3$

1.4.2101 - 31.3.2106...... 75.0 m³ Future arisings -

Total future arisings: 75.0 m³ 75.0 m³ Total waste volume:

Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over five years.

> Final Dismantling & Site Clearance is assumed to commence in 2097 with reactor dismantling commencing in 2101 and lasting for 5 years. The volumes and radioactivity

have been calculated for 85 years after reactor shutdown, i.e. 2100.

Uncertainty factors on Stock (upper): Arisings (upper) x 1.2 volumes: Stock (lower): Arisings (lower) x 0.8

WASTE SOURCE Stainless steel items from reactor dismantling.

PHYSICAL CHARACTERISTICS

General description: A variety of stainless steel items. Waste can be packaged in standard NDA packages.

Stainless steel items (100%). Physical components (%wt):

Sealed sources: The waste does not contain sealed sources.

Bulk density (t/m3):

Comment on density: The density is of the waste as cut for packaging.

CHEMICAL COMPOSITION

General description and components (%wt):

Stainless steels (100%).

Chemical state: Neutral

Chemical form of

H-3: The tritium content is insignificant.

radionuclides: C-14: The carbon 14 will be incorporated in the steel. There also may be some graphite

contamination.

CI-36: The chlorine 36 will be incorporated in the steel.

Se-79: The selenium content is insignificant.

Tc-99: The chemical form of technetium has not been determined.

Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant.

Metals and alloys (%wt): Items will have been cut for packaging. Thicknesses are likely to vary from a few mm to

about 25 mm.

Type(s) / Grade(s) with proportions % of total C14 (%wt) activity

Stainless steel..... 100.0 Stainless steel types are EN58B and 100.0

BS970- EN58B.

Other ferrous metals.....

Iron.....

Aluminium...... 0 Beryllium.....

Cobalt			
Copper	0		
Lead	0		
Magnox/Magnesium	0		
Nickel			
Titanium			
Uranium			
Zinc	0		
Zircaloy/Zirconium	0		
Other metals	0	There are no "other" metals.	
Organics (%wt): None expected. N	No halogena	ted plastics or rubbers will be present.	
	(%wt)	Type(s) and comment	% of total C14 activity
Total cellulosics	0		
Paper, cotton	0		
Wood	0		
Halogenated plastics	0		
Total non-halogenated plastics	0		
Condensation polymers	0		
Others	0		
Organic ion exchange materials	0		
Total rubber	0		
Halogenated rubber	0		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	0		
Other materials (%wt): Some graphite du	ıst may be a	ssociated with reactor materials.	
	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	TR		

Desiccants/Catalysts		
Asbestos	0	
Non/low friable		
Moderately friable		
Highly friable		
Free aqueous liquids	0	
Free non-aqueous liquids	0	
Powder/Ash	0	
Inorganic anions (%wt): Trace quantities of c	chloride ma	ay be present.
	(%wt)	Type(s) and comment
Fluoride	0	
Chloride	TR	
lodide	0	
Cyanide	0	
Carbonate	0	
Nitrate	0	
Nitrite	0	
Phosphate	0	
Sulphate	0	
Sulphide	0	
Materials of interest for waste acceptance criteria: No materials likely to	o pose a fi	re or other non-radiological hazard have been identified.
	(%wt)	Type(s) and comment
Combustible metals	0	
Low flash point liquids	0	
Explosive materials	0	
Phosphorus	0	
Hydrides	0	
Biological etc. materials	0	
Biodegradable materials		
Putrescible wastes	0	
Non-putrescible wastes		
Corrosive materials	0	
Pyrophoric materials	0	
Generating toxic gases	0	
Reacting with water	0	
Higher activity particles		
Soluble solids as bulk chemical compounds		

Hazardous substances / non hazardous pollutants:

Complexing

None expected

	(%wt)	Type(s) and comment
Acrylamide		
Benzene		
Chlorinated solvents		
Formaldehyde		
Organometallics		
Phenol		
Styrene		
Tri-butyl phosphate		
Other organophosphates		
Vinyl chloride		
Arsenic		
Barium		
Boron		
Boron (in Boral)		
Boron (non-Boral)		
Cadmium		
Caesium		
Selenium		
Chromium		
Molybdenum		
Thallium		
Tin		
Vanadium		
Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4		
EEE Type 5		
agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants		
Total complexing agents	TR	

Potential for the waste to contain discrete items:

Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; All stainless items assumed DIs. NB if recycled then DI

Limits n/a

PACKAGING AND CONDITIONING

Conditioning method: The waste is not expected to be supercompacted. The treatment envisaged is the

placement of the waste in baskets followed by encapsulation.

Plant Name: None

Location: Wylfa Power Station

Plant startup date: ~2101 Total capacity ~5000.0

(m³/y incoming waste):

2101

Target start date for packaging this stream:

Throughput for this stream

14.0

(m³/y incoming waste):

The processing strategy has not yet been determined.

Likely container type:

Other information:

Container	Waste packaged (%vol)	Waste loading (m³)	Payload (m³)	Number of packages
4m box (100mm concrete shielding)	100.0	12.3	14.3	7

Likely container type

comment:

The container choice may be influenced by the Transport Regulations at the time of Final Site Clearance. The waste is assumed to be in baskets in the waste package so the

occupied volume in the package is greater than the original waste volume.

Range in container waste

volume:

Not yet determined. No significant variability is expected.

Other information on

containers:

The container material is expected to be stainless steel.

Likely conditioning matrix:

Other information:

Blast Furnace Slag / Ordinary Portland Cement The waste is assumed to be encapsulated.

Conditioned density (t/m³):

Conditioned density

comment:

~3.0 The conditioned waste density assumes that the waste will be encapsulated.

Other information on

conditioning:

The waste will be in baskets placed in the waste packages. Baskets of different Final Dismantling & Site Clearance ILW wastes may be in the same waste package. The encapsulation matrix is likely to be BFS/OPC. Data have been presented as if the waste

will be placed in a container with other ILW.

Opportunities for alternative

disposal routing:

Opportunity	Opportunity Common Comm	mment
-------------	--	-------

RADIOACTIVITY

Source: Activation of the stainless steel and impurities.

Uncertainty: The values quoted were derived by calculation from available material specifications and

are indicative of the activities that are to be expected. The major source of uncertainty is

the impurity levels.

Definition of total alpha and total beta/gamma:

Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.

Measurement of radioactivities:

The specific activities were estimated from neutron activation calculations of the material

and its impurities.

Other information:

The activities quoted are those at 85 years after reactor shutdown. There may be some

contamination by Cs137.

	Mean radioactivity, TBq/m³			Mean radioactivity, TBq/m³					
Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2022	Bands and Code	Future arisings	Bands and Code
H 3				8	Gd 153				8
Be 10				8	Ho 163				8
C 14			9.39E-02	CC 2	Ho 166m				8
Na 22				8	Tm 170				8
Al 26				8	Tm 171				8
CI 36			3.84E-06	DC 2	Lu 174				8
			3.04L-00		Lu 174				8
Ar 39				8	Hf 178n				
Ar 42				8					8
K 40				8	Hf 182				8
Ca 41				8	Pt 193			0.045.07	8
Mn 53				8	TI 204			3.94E-07	CC 2
Mn 54				8	Pb 205				8
Fe 55			7.86E-08	CC 2	Pb 210				8
Co 60			7.49E-04	CC 2	Bi 208				8
Ni 59			2.36E-01	CC 2	Bi 210m				8
Ni 63			1.4E+01	CC 2	Po 210				8
Zn 65				8	Ra 223				8
Se 79				8	Ra 225				7
Kr 81				8	Ra 226				8
Kr 85				8	Ra 228				8
					Ac 227				8
Rb 87				8					
Sr 90				8	Th 227				8
Zr 93				8	Th 228				8
Nb 91				8	Th 229				8
Nb 92			2.34E-09	CC 2	Th 230				8
Nb 93m				6	Th 232				8
Nb 94			4.58E-04	CC 2	Th 234				8
Mo 93			2.42E-04	CC 2	Pa 231				8
Tc 97				8	Pa 233				8
Tc 99			4.81E-05	CC 2	U 232				8
Ru 106				8	U 233				8
Pd 107				8	U 234				8
			0.075.04		U 235				8
Ag 108m			2.87E-04	CC 2	U 236				8
Ag 110m				8	U 238				8
Cd 109				8					
Cd 113m				8	Np 237				8
Sn 119m				8	Pu 236				8
Sn 121m				8	Pu 238				8
Sn 123				8	Pu 239				8
Sn 126				8	Pu 240				8
Sb 125				8	Pu 241				8
Sb 126				8	Pu 242				8
Te 125m				8	Am 241				8
Te 127m				8	Am 242m				8
I 129				8	Am 243				8
					Cm 242				8
Cs 134				8	Cm 242				8
Cs 135				8	Cm 244				
Cs 137				6					8
Ba 133				8	Cm 245				8
La 137				8	Cm 246				8
La 138				8	Cm 248				8
Ce 144				8	Cf 249				8
Pm 145				8	Cf 250				8
Pm 147				8	Cf 251				8
Sm 147				8	Cf 252				8
Sm 151				8	Other a				
Eu 152				8	Other b/g				
					Total a	0		0	
Eu 154				8	. J.a. u	ı		U	
Eu 155				8	Total b/g	0		1.43E+01	CC 2

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10

D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)
- 4 Not present
- 5 Present but not significant
- 6 Likely to be present but not assessed
- 7 Present in significant quantities but not determined
- 8 Not expected to be present in significant quantity