SITE Wylfa SITE OWNER Nuclear Decommissioning Authority WASTE CUSTODIAN Magnox Limited WASTE TYPE ILW Is the waste subject to Scottish Policy: No **WASTE VOLUMES** Comment on volumes: For inventory purposes the arisings are assumed to arise at a uniform rate over five years. Final Dismantling & Site Clearance is assumed to commence in 2097 with reactor dismantling commencing in 2101 and lasting for 5 years. The volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2100. Uncertainty factors on Stock (upper): x Arisings (upper) x 1.2 volumes: Stock (lower): x Arisings (lower) x 0.8 **WASTE SOURCE** A variety of miscellaneous metallic wastes resulting from reactor dismantling. #### PHYSICAL CHARACTERISTICS General description: Reactor components including boron steel control rods and thermocouples. Waste can be packaged in standard NDA packages. Physical components (%wt): A variety of miscellaneous metallic wastes including boron steel control rods (99%wt) and thermocouples (<1%wt). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): ~1.4 Comment on density: The density is of the waste as prepared for packaging. #### CHEMICAL COMPOSITION General description and components (%wt): A variety of materials including boron steel, chromel, alumel and magnesium oxide. Chemical state: Neutral Chemical form of H-3: The tritium content is insignificant. radionuclides: C-14: The chemical form of carbon 14 has not been determined but may be graphite. Cl-36: The chemical form of chlorine 36 has not been assessed. Se-79: The selenium content is insignificant. Tc-99: The chemical form of technetium has not been determined. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant. Metals and alloys (%wt): Items will have been cut for packaging but an assessment of item dimensions has not been made. (%wt) Type(s) / Grade(s) with proportions % of total C14 activity Stainless steel...... 0 • alloys has not been made, but will include 4% Boron Cr steel Iron..... Aluminium...... NE | Beryllium | 0 | | | |---|-----------|---|-------------------------| | Cobalt | | | | | Copper | NE | | | | Lead | NE | | | | Magnox/Magnesium | NE | MgO is expected to be present | | | Nickel | <1.0 | Chromel (NiCr) (<.2%) and Alumel (NiAl) (<.2%). | | | Titanium | | | | | Uranium | | | | | Zinc | NE | | | | Zircaloy/Zirconium | NE | | | | Other metals | | | | | Organics (%wt): None expected. The | re are no | halogenated plastics or rubbers present. | | | | (%wt) | Type(s) and comment | % of total C14 activity | | Total cellulosics | 0 | | douvity | | Paper, cotton | 0 | | | | Wood | 0 | | | | Halogenated plastics | 0 | | | | Total non-halogenated plastics | 0 | | | | Condensation polymers | 0 | | | | Others | 0 | | | | Organic ion exchange materials | 0 | | | | Total rubber | 0 | | | | Halogenated rubber | 0 | | | | Non-halogenated rubber | 0 | | | | Hydrocarbons | | | | | Oil or grease | | | | | Fuel | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | Asphalt/Tarmac (no coal tar) | | | | | Bitumen | | | | | Others | | | | | Other organics | 0 | | | | Other materials (%wt): Some graphite dust | may be as | ssociated with reactor materials. | | | | (%wt) | Type(s) and comment | % of total C14 activity | | Inorganic ion exchange materials | 0 | | , | | Inorganic sludges and flocs | 0 | | | | Soil | 0 | | | | Brick/Stone/Rubble | 0 | | | | Cementitious material | 0 | | | | Sand | | | | | Glass/Ceramics | 0 | | | | Graphite | TR | | |--|-------------|---| | Desiccants/Catalysts | | | | Asbestos | 0 | | | Non/low friable | | | | Moderately friable | | | | Highly friable | | | | Free aqueous liquids | 0 | | | Free non-aqueous liquids | 0 | | | Powder/Ash | 0 | | | norganic anions (%wt): Not fully assessed. | | | | San a sa | (%wt) | Type(s) and comment | | | | Type(3) and comment | | Fluoride | NE | | | Chloride | NE | | | lodide | NE | | | Cyanide | 0 | | | Carbonate | NE | | | Nitrate | NE | | | Nitrite | NE | | | Phosphate | NE | | | Sulphate | NE | | | Sulphide | NE | | | Materials of interest for No materials likely to waste acceptance criteria: | o pose a fi | re or other non-radiological hazard have been identified. | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | 0 | | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds. | | | Hazardous substances / non hazardous pollutants: Complexing None expected | | (%wt) | Type(s) and comment | |---------------------------------------|-------|---------------------| | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | | | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | | | | Thallium | | | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | TR | | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs. NB If recycled then DI Limits n/a #### **PACKAGING AND CONDITIONING** Conditioning method: The waste is not expected to be supercompacted. The treatment envisaged is the placement of the waste in baskets followed by encapsulation. Plant Name: None Location: Wylfa Power Station Plant startup date: 2101 Total capacity ~5000.0 (m³/y incoming waste): Target start date for 2101 packaging this stream: Throughput for this stream (m³/y incoming waste): 3.7 Other information: The processing strategy has not yet been determined. Likely container type: | Container | Waste
packaged
(%vol) | Waste loading (m³) | Payload
(m³) | Number of packages | |-----------------------------------|-----------------------------|--------------------|-----------------|--------------------| | 4m box (200mm concrete shielding) | 100.0 | 9.3 | 10.9 | 3 | Likely container type comment: The container choice may be influenced by the Transport Regulations at the time of Final Site Clearance. The waste is assumed to be in baskets in the waste package so the occupied volume in the package is greater than the original waste volume. Range in container waste volume: Not yet determined. No significant variability is expected. Other information on containers: The container material is expected to be stainless steel. Likely conditioning matrix: Other information: Blast Furnace Slag / Ordinary Portland Cement The waste is assumed to be encapsulated. Conditioned density (t/m³): Conditioned density comment: The conditioned waste density assumes the waste is encapsulated. Other information on conditioning: The waste will be in baskets placed in the waste packages. Baskets of different Final Dismantling & Site Clearance ILW wastes may be in the same waste package. The encapsulation matrix is be likely to be BFS/OPC. Opportunities for alternative disposal routing: ~3.0 | Baseline Opportunity Stream Date that Management Route Management Route volume (%) Estimated Date that Opportunity will be realise | | |---|--| |---|--| #### **RADIOACTIVITY** Source: Activation of the metals and impurities. Uncertainty: The values quoted were derived by calculation from available material specifications and are indicative of the activities that are expected. The major source of uncertainty is the impurity levels. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. 2022 Inventory Measurement of radioactivities: The specific activities for the reactor materials were estimated from neutron activation calculations of the material and its impurities. Other information: There may be some contamination by Cs137. The activities quoted are those at 85 years after reactor shutdown. | | Mean radioactivity, TBq/m³ | | | Mean radioactivity, TBq/m³ | | | | | | |---------|----------------------------|-------------------|--------------------|----------------------------|-------------------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | | | | 8 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 2.3E-01 | CC 2 | Ho 166m | | | | 8 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | Al 26 | | | 1E-06 | CC 2 | Tm 171 | | | | 8 | | CI 36 | İ | | 6.35E-05 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | 0.002 00 | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | 2.4E-04 | CC 2 | Pt 193 | | | | 8 | | Mn 53 | | | 2.4L-04 | 8 | TI 204 | | | 8.54E-08 | CC 2 | | | | | | | Pb 205 | | | 0.542-00 | 8 | | Mn 54 | | | 4 575 07 | 8 | Pb 203
Pb 210 | | | | | | Fe 55 | | | 1.57E-07 | CC 2 | | | | | 8 | | Co 60 | | | 6.32E-04 | CC 2 | Bi 208 | | | | 8 | | Ni 59 | | | 5.17E-01 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 3.48E+01 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | | 8 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | 1.31E-08 | CC 2 | Th 230 | | | | 8 | | Nb 93m | | | | 6 | Th 232 | | | | 8 | | Nb 94 | | | 1.46E-03 | CC 2 | Th 234 | | | | 8 | | Mo 93 | | | 9.64E-04 | CC 2 | Pa 231 | | | | 8 | | Tc 97 | | | | 8 | Pa 233 | | | | 8 | | Tc 99 | | | 1.97E-04 | CC 2 | U 232 | | | | 8 | | Ru 106 | | | 1.07 2 0 1 | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | 3.68E-03 | CC 2 | U 235 | | | | 8 | | Ag 100m | | | 3.00L-03 | 8 | U 236 | | | | 8 | | Cd 109 | | | | | U 238 | | | | 8 | | | | | | 8 | Np 237 | | | | 8 | | Cd 113m | | | | 8 | Pu 236 | | | | 8 | | Sn 119m | | | | 8 | Pu 238 | | | | 8 | | Sn 121m | | | | 8 | Pu 239 | | | | 8 | | Sn 123 | | | | 8 | Pu 240 | | | | 8 | | Sn 126 | | | | 8 | Pu 241 | | | | 8 | | Sb 125 | | | | 8 | Pu 241
Pu 242 | | | | 8 | | Sb 126 | | | | 8 | Am 241 | | | | 8 | | Te 125m | | | | 8 | Am 241
Am 242m | | | | 8
8 | | Te 127m | | | | 8 | | | | | | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | | | | 8 | Cm 242 | | | | 8 | | Cs 135 | | | | 8 | Cm 243 | | | | 8 | | Cs 137 | | | | 6 | Cm 244 | | | | 8 | | Ba 133 | | | | 8 | Cm 245 | | | | 8 | | La 137 | | | | 8 | Cm 246 | | | | 8 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 | | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 147 | | | | 8 | Cf 251 | | | | 8 | | Sm 147 | | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | | 8 | Other a | | | | | | Eu 152 | | | | 8 | Other b/g | | | | | | Eu 154 | | | | 8 | Total a | 0 | | 0 | | | Eu 155 | | | | 8 | Total b/g | 0 | | 3.56E+01 | CC 2 | | | I | | | Ũ | | | l | | | ### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Note: Bands quantify uncertainty in mean radioactivity. #### Code - 1 Measured activity - 2 Derived activity (best estimate) - 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed - 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity