SITE Wvlfa SITE OWNER **Nuclear Decommissioning Authority** **WASTE CUSTODIAN** Magnox Limited LLW **WASTE TYPE** Is the waste subject to Scottish Policy: Nο **WASTE VOLUMES** Reported At 1.4.2022..... Stocks: $0 \, \text{m}^3$ Future arisings -1.4.2101 - 31.3.2106...... 41.1 m³ 41.1 m³ Total future arisings: Total waste volume: 41.1 m³ Comment on volumes: Waste which has been deferred from C&M prep stream 9H914 to FSC. Final Dismantling & Site Clearance is assumed to commence in 2097 with reactor dismantling commencing in 2101 and lasting for 5 years. The volumes and radioactivity have been calculated for 85 years after reactor shutdown, i.e. 2100. Uncertainty factors on volumes: Stock (upper): Arisings (upper) Χ x 1.2 Stock (lower): Arisings (lower) x 0.8 **WASTE SOURCE** Waste which has been deferred from Care and Maintenance preparations and procedures in the areas covered by this waste stream. #### PHYSICAL CHARACTERISTICS General description: Metal, plastic, paper and cloth. No large items are expected. Physical components (%wt): Metal waste (96% wt) and plastic (4%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m3): 0.3 Comment on density: Density is based on the typical weight of a 200 litre drum. #### CHEMICAL COMPOSITION General description and components (%wt): The waste comprises metal and plastic. Metal waste (96% wt) and plastic (4%). Chemical state: Neutral Chemical form of H-3: The chemical form of tritium has not been determined. radionuclides: C-14: The chemical form of carbon 14 has not been determined. CI-36: The majority of chlorine 36 is expected to be in the form of ammonium chloride. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: Radium isotope content is expected to be insignificant. Th: The thorium content is insignificant. U: The uranium isotope content is insignificant. Np: The neptunium content is insignificant. Pu: Chemical form of plutonium isotopes may be plutonium oxides. Metals and alloys (%wt): Metal thicknesses will be variable from about 1 mm up to about several mm. 30% of the waste is steel drums with a typical wall thickness of 1-2 mm. % of total C14 (%wt) Type(s) / Grade(s) with proportions activity Stainless steel..... 5.0 Chromium and nickel will be present in stainless steel. Other ferrous metals......~91.0 Iron..... Aluminium...... 0 Beryllium...... 0 | | Cobalt | | | | |--------------|----------------------------------|-------|---|-------------------------| | | Copper | . TR | | | | | Lead | . 0 | | | | | Magnox/Magnesium | . 0 | | | | | Nickel | . Р | Chromium will be present in stainless steel. | | | | Titanium | | | | | | Uranium | . 0 | | | | | Zinc | . 0 | | | | | Zircaloy/Zirconium | 0 | | | | | Other metals | . Р | Nickel will be present in stainless steel. There are no "other" metals. | | | Organics (% | | | genated plastics expected. Halogenated
sent but their types have not been fully as | | | | | (%wt) | Type(s) and comment | % of total C14 | | | Total cellulosics | 0 | | activity | | | Paper, cotton | 0 | | | | | Wood | 0 | | | | | Halogenated plastics | ~4.0 | | | | | Total non-halogenated plastics | 0 | | | | | Condensation polymers | 0 | | | | | Others | 0 | | | | | Organic ion exchange materials | 0 | | | | | Total rubber | TR | | | | | Halogenated rubber | TR | | | | | Non-halogenated rubber | TR | | | | | Hydrocarbons | | | | | | Oil or grease | | | | | | Fuel | | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | | Asphalt/Tarmac (no coal tar) | | | | | | Bitumen | | | | | | Others | | | | | | Other organics | TR | | | | Other materi | als (%wt): - | | | | | | | (%wt) | Type(s) and comment | % of total C14 activity | | | Inorganic ion exchange materials | 0 | | | | | Inorganic sludges and flocs | 0 | | | | | Soil | 0 | | | | | Brick/Stone/Rubble | 0 | | | | | Cementitious material | 0 | | | | | Sand | | | | | | Glass/Ceramics | 0 | | | | | Graphite | 0 | | |-------------------------------|---|--------|---------------------| | | Desiccants/Catalysts | | | | | Asbestos | <1.0 | | | | Non/low friable | | | | | Moderately friable | | | | | Highly friable | | | | | Free aqueous liquids | 0 | | | | Free non-aqueous liquids | 0 | | | | Powder/Ash | 0 | | | Inorganic anic | ons (%wt): Only chlorides antici | pated. | | | | | (%wt) | Type(s) and comment | | | Fluoride | 0 | | | | Chloride | 0 | | | | lodide | 0 | | | | Cyanide | 0 | | | | Carbonate | 0 | | | | Nitrate | 0 | | | | Nitrite | 0 | | | | Phosphate | 0 | | | | Sulphate | 0 | | | | Sulphide | 0 | | | Materials of in waste accepta | | esent. | | | waste accepte | ando ontona. | (%wt) | Type(s) and comment | | | Combustible metals | 0 |) [-(-) | | | Low flash point liquids | 0 | | | | Explosive materials | 0 | | | | Phosphorus | 0 | | | | Hydrides | 0 | | | | Biological etc. materials | 0 | | | | Biodegradable materials | Ü | | | | Putrescible wastes | 0 | | | | Non-putrescible wastes | | | | | Corrosive materials | 0 | | | | Pyrophoric materials | 0 | | | | Generating toxic gases | 0 | | | | Reacting with water | 0 | | | | Higher activity particles | | | | | Soluble solids as bulk chemical compounds | | | Hazardous substances / non hazardous pollutants: Complexing Asbestos <1% wt. | | (%wt) | Type(s) and comment | |---------------------------------------|-------|---------------------| | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | | | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | | | | Thallium | | | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | agents (%wt): No | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | 0 | | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; All stainless items assumed DIs. NB if recycled then DI Limits n/a #### TREATMENT, PACKAGING AND DISPOSAL Planned on-site / off-site treatment(s): | Treatment | On-site /
Off site | Stream volume % | |-----------------------|-----------------------|-----------------| | Low force compaction | | | | Supercompaction (HFC) | | | | Incineration | | | | Solidification | | | | Decontamination | | | | Metal treatment | | 96.0 | | Size reduction | | | | Decay storage | | | | Recyling / reuse | | | | Other / various | | | | None | | 4.0 | | 1 | | | Comment on planned treatments: **Disposal Routes:** | Disposal Route | Stream volume % | Disposal
density t/m3 | |---|-----------------|--------------------------| | Expected to be consigned to the LLW Repository | 4.0 | | | Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility | | | | Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility | 96.0 | | | Expected to be consigned as Out of Scope Expected to be recycled / reused | | | | Disposal route not known | | | Classification codes for waste expected to be consigned to a landfill facility: ## Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above): | Disposal Route | Stream volume % | | | | | |--|-----------------|---------|---------|--|--| | Disposal Route | 2022/23 | 2023/24 | 2024/25 | | | | Expected to be consigned to the LLW Repository | | | | | | | Expected to be consigned to a Landfill Facility | | | | | | | Expected to be consigned to an On-Site Disposal Facility | | | | | | | Expected to be consigned to an Incineration Facility | | | | | | | Expected to be consigned to a Metal Treatment Facility | | | | | | | Expected to be consigned as Out of Scope | | | | | | | Expected to be recycled / reused | | | | | | | Disposal route not known | | | | | | #### Opportunities for alternative disposal routing: | | | | Estimated
Date that | | | |------------------------------|------------------------------|-------------------|------------------------------|---------------------------|---------| | Baseline
Management Route | Opportunity Management Route | Stream volume (%) | Opportunity will be realised | Opportunity
Confidence | Comment | | | | | will be realised | | | #### Waste Packaging for Disposal: | Container | Stream volume % | Waste loading m³ | Number of packages | |--|-----------------|------------------|--------------------| | 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other | 4.0 | 10 | <1 | Other information: - #### Waste Planned for Disposal at the LLW Repository: Container voidage: - Waste Characterisation The waste meets the LLWR's Waste Acceptance Criteria (WAC). Form (WCH): The waste does not have a current WCH. Waste consigned for disposal to LLWR in year of generation: The timing of consignment of the waste for disposal cannot be determined at present. Non-Containerised Waste for In-Vault Grouting: (Not applicable to this waste stream) Stream volume (%): Waste stream variation: Bounding cuboidal volume: Inaccessible voidage: - Other information: ### **RADIOACTIVITY** Source: Contamination by activation products and fission products. Uncertainty: Activity estimates are as shown in the radionuclide table. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of radioactivities: The specific activities have been estimated from the equivalent operational waste stream and decayed to FSC. Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2100. There may be some contamination by Cs137.It is expected that this Waste will become Out of Scope at FSC #### **WASTE STREAM Auxiliary Gas Systems LLW** 9H325 | | Mean radioactivity, TBq/m³ | | | | Mean radioactivity, TBq/m³ | | | | | |---------|----------------------------|-----------|----------|-----------|----------------------------|----------|-----------|----------|-----------| | | Waste at | Bands and | Future | Bands and | | Waste at | Bands and | Future | Bands and | | Nuclide | 1.4.2022 | Code | arisings | Code | Nuclide | 1.4.2022 | Code | arisings | Code | | H 3 | | | 4.45E-06 | CC 2 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 4.54E-07 | CC 2 | Ho 166m | | | | 8 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | Al 26 | | | | 8 | Tm 171 | | | | 8 | | CI 36 | | | 4.38E-04 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | 8 | Hf 182 | | | | 8 | | Ca 41 | | | | 8 | Pt 193 | | | | 8 | | Mn 53 | | | | 8 | TI 204 | | | | 8 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | | 8 | Pb 210 | | | | 8 | | Co 60 | | | | 8 | Bi 208 | | | | 8 | | Ni 59 | | | | 8 | Bi 210m | | | | 8 | | Ni 63 | | | 6.58E-08 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | 1.07E-09 | CC 2 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | | 8 | Th 230 | | | | 8 | | Nb 93m | | | | 8 | Th 232 | | | | 8 | | Nb 94 | | | 4.06E-09 | CC 2 | Th 234 | | | | 8 | | Mo 93 | | | | 8 | Pa 231 | | | | 8 | | Tc 97 | | | | 8 | Pa 233 | | | | 8 | | Tc 99 | | | | 8 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | 4.54E-09 | CC 2 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | | 8 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | | 8 | Pu 238 | | | | 8 | | Sn 123 | | | | 8 | Pu 239 | | | | 8 | | Sn 126 | | | | 8 | Pu 240 | | | | 8 | | Sb 125 | | | | 8 | Pu 241 | | | | 8 | | Sb 126 | | | | 8 | Pu 242 | | | | 8 | | Te 125m | | | | 8 | Am 241 | | | | 8 | | Te 127m | | | | 8 | Am 242m | | | | 8 | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | | | | 2 | Cm 242 | | | | 8 | | Cs 135 | | | | 8 | Cm 243 | | | | 8 | | Cs 137 | | | 1.14E-08 | CC 2 | Cm 244 | | | | 8 | | Ba 133 | | | | 8 | Cm 245 | | | | 8 | | La 137 | | | | 8 | Cm 246 | | | | 8 | | La 138 | | | | 8 | Cm 248 | | | | 8 | | Ce 144 | | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 147 | | | | 8 | Cf 251 | | | | 8 | | Sm 147 | | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | | 8 | Other a | | | | | | Eu 152 | | | | 8 | Other b/g | | | | | | Eu 154 | | | | 8 | Total a | 0 | | 0 | | | Eu 155 | | | | 8 | Total b/g | 0 | | 4.43E-04 | CC 2 | | L | 1 | | | l | | | | • | | ## Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Bands quantify uncertainty in mean radioactivity. #### Code - 1 Measured activity - 2 Derived activity (best estimate) - 3 Derived activity (upper limit) - 4 Not present - 5 Present but not significant - 6 Likely to be present but not assessed 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity