SITE	Hunterston A				
SITE OWNER	Nuclear Decomm	nissioning Authority			
WASTE CUSTODIAN	Magnox Limited				
WASTE TYPE	ILW				
Is the waste subject to Scottish Policy:	Yes				
WASTE VOLUMES			Reported		
Stocks:	At 1.4.2022		488.4 m³		
Total future arisings:			0 m³		
Total waste volume:			488.4 m³		
Comment on volumes:	There will be not conditioned. The 17.9 m3 and FEI	future arisings from t total waste volume i D Fuel Channel Com	his stream. s made up c ponents 23.3	The waste is conta of the sum of FED 3 m3	inerised but not yet graphite 447.2 m3, MCI
Uncertainty factors on	Stock (upper):	x 1.2		Arisings (upper)	х
volumes:	Stock (lower):	x 0.8		Arisings (lower)	х
WASTE SOURCE	FED Graphite: For fuel elements plu is redundant con The waste consist	uel element debris fr is reflector sleeves fr taminated equipmen sts of components fro	om the remo om each fue t and materia om reactor fu	oval of graphite sle I channel.MCI: The als.FED Fuel Char uel assemblies.	eves from discharged e source of the waste nel Components:

PHYSICAL CHARACTERISTICS

General description:	FED Graphite: Each fuel channel comprised 10 fuel elements (with associated graphite sleeves) and a disposable bottom reflector graphite sleeve. The fuel element sleeve and the reflector have been removed from the fuel and reduced in size in a cracking unit. The resultant graphite pieces have a maximum size of 300 mm and weight of 5.5 kg. Dust from the cracking operation has been accumulated in polythene bags or bottle. There are no large items that may require special handling.MCI: The waste consists mainly of filter dust bags with some filters and general wastes. Items must have a dimension less than 1.3 metres to pass through a bunker loading hole. Wastes may be in polythene bags or 180 litre drums. No large items have been identified.FED Fuel Channel Components: Fuel channel components are metallic and consist of one cast iron support member and ten zirconium D bars per fuel channel. There are no large items that may require special handling.
Physical components (%wt):	FED Graphite (91.56%): Fuel element sleeves (94 wt%), reflector sleeves (6 wt%), polythene bags and bottles (trace wt%).MCI (3.67%): Percentage breakdown of physical constituents by weight is as follows: filters (~2%), filter dust bags (~76%), general waste (~22%). By volume, the solid and dusts are 24 and 76% respectively.FED Fuel Channel Components (4.77%): Support members (67% wt), D-bars (33% wt).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~1.35
Comment on density:	Mean Density of waste calculated assuming a packing efficiency of 1.4 (packing fraction of 0.71). Density may be greater than the given value towards the bottom of the bunker, where the graphite may be crushed.

CHEMICAL COMPOSITION

General description and components (%wt): FED Graphite; Graphite (100%), graphite impurities. The waste consists almost entirely of graphite with only trace amounts of activated impurities fission products, actinide contaminants and trace quantities of polythene.MCI: The waste consists of metals such as stainless steel, mild steel and aluminium, entrapped graphite dust and other dust and ceramic material.FED Fuel Channel Components: The waste consists of cast iron and zirconium metal. Cast iron (~67%), zirconium (~33%).

WASTE STREAM	9J21 Bunker	Waste		
Chemical state:	Neutral			
Chemical form of radionuclides:	H-3: The chemical for surface contamination C-14: Carbon 14 will Cl-36: The chemical present as surface of Se-79: The seleniun Tc-99: The chemical Ra: The radium isoto Th: The thorium isoto U: The chemical for Np: The neptunium of Pu: The chemical for as plutonium oxides	orm of tritin on. I be prese form of cl contaminat n content i I form of T ope conter ope conter ope conter ope conter is content is rm of pluto	um has not been assessed but will probab nt as graphite. nlorine 36 has not been determined but wi tion. s insignificant. echnetium has not been determined. nt is insignificant. nt is insignificant. um isotopes may be uranium oxides. insignificant. onium isotopes has not been determined b	oly be present as Il probably be but may be present
Metals and alloys (%wt):	FED Graphite: No sl is expected.FED Fu length by 150 mm d	neet or bul el Channe iameter.	k metal present in this waste stream.MCI: I Components: Support members (~67% v	No sheet metal vt) are 200 mm
		(%wt)	Type(s) / Grade(s) with proportions	% of total C14 activity
Stainless steel		0		
Other ferrous n	netals	4.0		
Iron				
Aluminium		0		
Beryllium		0.01		
Cobalt				
Copper		0		
Lead		0		
Magnox/Magne	esium	TR		
Nickel				
Titanium				
Uranium				
Zinc		0		
Zircaloy/Zircon	ium	1.6	FED Fuel Channel Components: Zirconium D-bars.	
Other metals		TR	Only trace amounts of "other" metals may be present.	
Organics (%wt):	Trace amounts of po polythene bags or b amounts of organic plastics or rubbers p are expected to be p	olythene work work waterials low settles. Filte waterials low settles with the settle with the	ill be present. Graphite dust was placed in ers and waste bags contain organic mater have not been established. There are no h the majority of the waste. Halogenated pla hin the MCI, however no detailed informa	n the bunkers using ials. The relative nalogenated astics and rubbers tion exists.

Type(s) and comment

% of total C14 activity

	(%wt)
Total cellulosics	0
Paper, cotton	0
Wood	0
Halogenated plastics	NE
Total non-halogenated plastics	TR
Condensation polymers	0
Others	TR
Organic ion exchange materials	0
Total rubber	0

Halogenated rubber	NE		
Non-halogenated rubber	0		
Hydrocarbons			
Oil or grease			
Fuel			
Asphalt/Tarmac (cont.coal tar)			
Asphalt/Tarmac (no coal tar)			
Bitumen			
Others			
Other organics	TR		
Other materials (%wt): Principally graphite.			
	(%wt)	Type(s) and comment	% of total C14 activity
Inorganic ion exchange materials	0		·
Inorganic sludges and flocs	0		
Soil	0		
Brick/Stone/Rubble	0		
Cementitious material	0		
Sand			
Glass/Ceramics	0		
Graphite	94.4		100.0
Desiccants/Catalysts			
Asbestos	0		
Non/low friable			
Moderately friable			
Highly friable			
Free aqueous liquids	TR		
Free non-aqueous liquids	0		
Powder/Ash	<1.0		
Inorganic anions (%wt): None expected at gr	eater than	trace concentration.	
	(%wt)	Type(s) and comment	

Fluoride	TR
Chloride	TR
lodide	0
Cyanide	0
Carbonate	TR
Nitrate	TR
Nitrite	TR
Phosphate	TR
Sulphate	TR
Sulphide	0

2022 Inventory

Materials of interest for waste acceptance criteria:

Graphite dust could be hazardous. Whilst it is difficult to ignite, graphite will eventually burn in air. There may be traces of Magnox present.

Type(s) and comment

	(%wt)
Combustible metals	TR
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	0
Putrescible wastes	0
Non-putrescible wastes	
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	NE
Reacting with water	TR
Higher activity particles	
Soluble solids as bulk chemical compounds	

Hazardous substances / none expected non hazardous pollutants:

(%wt) Type(s) and commen	(%wt)	Type(s) and comment
--------------------------	-------	---------------------

Acrylamide
Benzene
Chlorinated solvents
Formaldehyde
Organometallics
Phenol
Styrene
Tri-butyl phosphate
Other organophosphates
Vinyl chloride
Arsenic
Barium
Boron
Boron (in Boral)
Boron (non-Boral)
Cadmium
Caesium
Selenium
Chromium
Molybdenum
Thallium

2022 Inventory

0

Tin
Vanadium
Mercury compounds
Others
Electronic Electrical Equipment (EEE)
EEE Type 1
EEE Type 2
ЕЕЕ Туре 3
EEE Type 4
ЕЕЕ Туре 5
agents (%wt): Ves

Complexing agents (%wt): Yes

(%wt) Typ	e(s) and	comment
-----------	----------	---------

EDTA	
DPTA	
NTA	
Polycarboxylic acids	
Other organic complexants	
Total complexing agents	TR

Potential for the waste to	Yes.	Fuel Sleeves assumed to be DIs
contain discrete items:		

PACKAGING AND CONDITIONING

Conditioning method:	The waste will be grouted in 3m3 stainless steel boxThe waste has been containerised and is in the ILW store awaiting conditioning.
Plant Name:	SILWR
Location:	Hunterston A Decommissioning Site
Plant startup date:	-
Total capacity (m ³ /y incoming waste):	~500.0
Target start date for packaging this stream:	-
Throughput for this stream (m ³ /y incoming waste):	~90.0
Other information:	The current proposal is to process the waste during Care and Maintenance

The current proposal is to process the waste during Care and Maintenance Preparation. All wastes in the bunker will be encapsulated together, excluding any dusts (9J62).

Likely container type:	Container	Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Number of packages
	3m³ box (round corners)	100.0	1.785	2.9	274

Likely container type comment:	It is not expected that the waste will be tamped or compacted.
Range in container waste volume:	No significant variability is expected.
Other information on containers:	The 3m3 box is expected to be made from stainless steel.

-

-

Likely conditioning m	ely conditioning matrix: Blast Furnace Slag / Ordinary Portland Cement							
Other information:	۲ r	The waste is expected to be encapsulated in BFS/OPC. PFA/OPC is another matrix that may be adopted.						
Conditioned density	(t/m³): ~	-2.0						
Conditioned density comment:	Inditioned density The density of conditioned waste will probably be about 2 t/m3. mment:							
Other information on conditioning:The current proposal is to retrieve and condition wastes held in the SAWB Bunkers durin Care and Maintenance Preparation.					eld in the SAWB Bunkers during			
Opportunities for alte disposal routing:	ernative	-						
				Estimated				
Baseline Management Route	Opportu Manageme	unity nt Route	Stream volume (%)	Date that Opportunity will be realised	Opportunity Confidence	Comment		

RADIOACTIVITY	
Source:	Predominantly activation products with possible contamination by fission products and actinides.
Uncertainty:	The values quoted are indicative of the activities that might be expected.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Activities have been estimated from activation calculations with assumptions for contamination.
Other information:	-

-

-

-

-

	Mean radioactivity. TBo/m ³				Mean radioactivity. TBg/m ³				
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
Н3	1.91E-01	CC 2			Gd 153		8		
Be 10	4.77E-06	CC 2			Ho 163		8		
C 14	7.51E-03	CC 2			Ho 166m	9.09E-06	CC 2		
Na 22					Tm 170		8		
AI 26		8			Tm 171		8		
CI 36	2.72E-04	CC 2			Lu 174		8		
Ar 39		8			Lu 176		8		
Ar 42		8			Hf 178n		8		
K 40		8			Hf 182		8		
Ca 41	2 26E-05	CC 2			Pt 193		8		
Mn 53	2.202 00	8			TI 204		8		
Mn 54		8			Pb 205		8		
Fo 55	9.03E-03				Pb 210		8		
Co 60	1 08E 01				Bi 208		0		
	1.302-01				Bi 210m		0		
Ni 62	1.43E-04				Di 21011 Do 210		0		
	3.00E-02				F0 210		0		
211 00		Ö			Ra 223		0		
Se /9		ð			Ra 225		ð		
		8					ð		
C6 1/1		8			Ka 228		8		
Rb 87	0 5 0 <i>1</i>	8			Ac 227		8		
Sr 90	6E-04	CC 2			Th 227		8		
Zr 93	4.77E-04	CC 2			Th 228		8		
Nb 91		8			Th 229		8		
Nb 92	9.54E-09	CC 2			Th 230		8		
Nb 93m	4.32E-04	CC 2			Th 232		8		
Nb 94	4.73E-06	CC 2			Th 234	1.34E-08	CC 2		
Mo 93	4.75E-04	CC 2			Pa 231		8		
Tc 97		8			Pa 233	1.86E-09	CC 2		
Tc 99	1.43E-04	CC 2			U 232		8		
Ru 106		8			U 233		8		
Pd 107		8			U 234	1.44E-08	CC 2		
Ag 108m	9.37E-05	CC 2			U 235		8		
Ag 110m		8			U 236	1.80E-09	CC 2		
Cd 109		8			U 238	1.34E-08	CC 2		
Cd 113m	7.97E-05	CC 2			Np 237	1.86E-09	CC 2		
Sn 119m		8			Pu 236		8		
Sn 121m	2.46E-03	CC 2			Pu 238	7.69E-06	CC 2		
Sn 123		8			Pu 239	4.8E-06	CC 2		
Sn 126	1.59E-09	CC 2			Pu 240	9.02E-06	CC 2		
Sb 125	4.65E-06	CC 2			Pu 241	8.84E-05	CC 2		
Sb 126		8			Pu 242	4.62E-09	CC 2		
Te 125m	1.17E-06	CC 2			Am 241	1.20E-05	CC 2		
Te 127m		8			Am 242m	4.53E-08	CC 2		
l 129		8			Am 243	1.34E-08	CC 2		
Cs 134	4.27E-09	CC 2			Cm 242	3.73E-08	CC 2		
Cs 135	3.67E-09	CC 2			Cm 243	1.05E-08	CC 2		
Cs 137	6.08E-04	CC 2			Cm 244	1.11E-07	CC 2		
Ba 133	8.30E-07	CC 2			Cm 245		8		
La 137		8			Cm 246		8		
La 138		8			Cm 248		8		
Ce 144		8			Cf 249		8		
Pm 145	1.22E-04	CC 2			Cf 250		- 8		
Pm 147	3.46E-08	CC 2			Cf 251		8		
Sm 147		8			Cf 252		- 8		
Sm 151	8 86F-04	CC 2			Other a		5		
Eu 152	7.87F-03	CC 2			Other b/a				
Eu 154	7.27F-02	CC 2			Total a	3.37E-05	CC 2	0	
Eu 155	6 11 F-04	00 2			Total b/g	5 2/E-01	002	ň	
Lu 100	0.112-04	00 2			i otai b/g	3.240-01	00 2	v	

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity