SITE Hunterston A SITE OWNER Nuclear Decommissioning Authority WASTE CUSTODIAN Magnox Limited WASTE TYPE ILW Is the waste subject to Scottish Policy: Yes **WASTE VOLUMES** Total waste volume: Comment on volumes: Waste arisings are assumed to occur at a uniform rate over 5 years. Final Dismantling & Site Clearance is assumed to commence in 2071 with reactor dismantling commencing in 2075 and lasting for 5 years. The volumes and radioactivity have been calculated for 85 67.0 m³ years after reactor shutdown, i.e. 2075. Uncertainty factors on Stock (upper): x Arisings (upper) x 1.2 volumes: Stock (lower): x Arisings (lower) x 0.8 WASTE SOURCE Stainless steel items from reactor dismantling. #### PHYSICAL CHARACTERISTICS General description: A variety of stainless steel items. Physical components (%wt): Stainless steel items (100%). Sealed sources: The waste does not contain sealed sources. Bulk density (t/m³): ~1.4 Comment on density: The density is of the waste as cut for packaging. ### **CHEMICAL COMPOSITION** General description and components (%wt): Stainless steel (100%). Chemical state: Neutral Chemical form of H-3: The tritium content is insignificant. radionuclides: C-14: Carbon 14 will be incorporated in the steel. There may also be some graphite contamination. CI-36: Chlorine 36 will be incorporated in the steel. Se-79: The selenium content is insignificant. Tc-99: The technetium content is insignificant. Ra: The radium content is insignificant. Th: The thorium content is insignificant. U: The uranium content is insignificant. Np: The neptunium content is insignificant. Pu: The plutonium content is insignificant. Metals and alloys (%wt): Items will have been cut for packaging. Thicknesses are likely to vary from a few mm to about 25 mm. waste stream is stainless steel (EN58B). Other ferrous metals..... 0 | Cobalt | | | | |---|------------|--|-------------------------| | Copper | . 0 | | | | Lead | . 0 | | | | Magnox/Magnesium | . 0 | | | | Nickel | | | | | Titanium | | | | | Uranium | | | | | Zinc | . 0 | | | | Zircaloy/Zirconium | . 0 | | | | Other metals | . 0 | There are no "other" metals. | | | Organics (%wt): None expected. Ha | logenated | plastics or rubbers will not be present. | | | | (%wt) | Type(s) and comment | % of total C14 activity | | Total cellulosics | 0 | | adamy | | Paper, cotton | 0 | | | | Wood | 0 | | | | Halogenated plastics | 0 | | | | Total non-halogenated plastics | 0 | | | | Condensation polymers | 0 | | | | Others | 0 | | | | Organic ion exchange materials | 0 | | | | Total rubber | 0 | | | | Halogenated rubber | 0 | | | | Non-halogenated rubber | 0 | | | | Hydrocarbons | | | | | Oil or grease | | | | | Fuel | | | | | Asphalt/Tarmac (cont.coal tar) | | | | | Asphalt/Tarmac (no coal tar) | | | | | Bitumen | | | | | Others | | | | | Other organics | 0 | | | | Other materials (%wt): Some graphite dust | t may be a | ssociated with reactor materials. | | | | (%wt) | Type(s) and comment | % of total C14 activity | | Inorganic ion exchange materials | 0 | | , | | Inorganic sludges and flocs | 0 | | | | Soil | 0 | | | | Brick/Stone/Rubble | 0 | | | | Cementitious material | 0 | | | | Sand | | | | | Glass/Ceramics | 0 | | | | Graphite | TR | | | | Desiccants/Catalysts | | | |---|-------------|--| | Asbestos | 0 | | | Non/low friable | | | | Moderately friable | | | | Highly friable | | | | Free aqueous liquids | 0 | | | Free non-aqueous liquids | 0 | | | Powder/Ash | 0 | | | Inorganic anions (%wt): Trace quantities of | chloride m | ay be present. | | | (%wt) | Type(s) and comment | | Fluoride | 0 | | | Chloride | TR | | | lodide | 0 | | | Cyanide | 0 | | | Carbonate | 0 | | | Nitrate | 0 | | | Nitrite | 0 | | | Phosphate | 0 | | | Sulphate | 0 | | | Sulphide | 0 | | | Materials of interest for No materials likely twaste acceptance criteria: | to pose a f | ire or other non-radiological hazard have been identified. | | | (%wt) | Type(s) and comment | | Combustible metals | 0 | | | Low flash point liquids | 0 | | | Explosive materials | 0 | | | Phosphorus | 0 | | | Hydrides | 0 | | | Biological etc. materials | 0 | | | Biodegradable materials | | | | Putrescible wastes | 0 | | | Non-putrescible wastes | | | | Corrosive materials | 0 | | | Pyrophoric materials | 0 | | | Generating toxic gases | 0 | | | Reacting with water | 0 | | | Higher activity particles | | | | Soluble solids as bulk chemical compounds | | | Hazardous substances / non hazardous pollutants: Complexing None expected | | (%wt) | Type(s) and comment | |---------------------------------------|-------|---------------------| | Acrylamide | | | | Benzene | | | | Chlorinated solvents | | | | Formaldehyde | | | | Organometallics | | | | Phenol | | | | Styrene | | | | Tri-butyl phosphate | | | | Other organophosphates | | | | Vinyl chloride | | | | Arsenic | | | | Barium | | | | Boron | | | | Boron (in Boral) | | | | Boron (non-Boral) | | | | Cadmium | | | | Caesium | | | | Selenium | | | | Chromium | | | | Molybdenum | | | | Thallium | | | | Tin | | | | Vanadium | | | | Mercury compounds | | | | Others | | | | Electronic Electrical Equipment (EEE) | | | | EEE Type 1 | | | | EEE Type 2 | | | | EEE Type 3 | | | | EEE Type 4 | | | | EEE Type 5 | | | | agents (%wt): Yes | | | | | (%wt) | Type(s) and comment | | EDTA | | | | DPTA | | | | NTA | | | | Polycarboxylic acids | | | | Other organic complexants | | | | Total complexing agents | TR | | Potential for the waste to contain discrete items: Yes. Large Metal Items (LMIs)/"substantial" thickness items considered "durable" assumed DIs; All stainless items assumed DIs. NB if recycled then DI Limits n/a #### **PACKAGING AND CONDITIONING** Conditioning method: The waste is not expected to be supercompacted. It will be placed in baskets in the waste packages and encapsulated in 4m Stainless Steel ILW Boxes. Plant Name: None Hunterston A Decommissioning Site. Location: Plant startup date: 2075 Total capacity ~5000.0 (m³/y incoming waste): 2075 Target start date for packaging this stream: Throughput for this stream ~7.5 (m³/y incoming waste): The waste will be packaged immediately after the reactors are dismantled. It will be placed in basket and encapsulated. Basket of different ILW waste may be in the same package. Likely container type: Other information: | Container | Waste
packaged
(%vol) | Waste loading (m³) | Payload
(m³) | Number of packages | |-----------------------|-----------------------------|--------------------|-----------------|--------------------| | 4m box (no shielding) | 100.0 | ~16.2 | 18.9 | 5 | Likely container type comment: The waste is assumed to be in baskets in the waste package so the occupied volume in the package is greater than the original waste volume. Range in container waste volume: Not yet determined. No significant variability is expected. Other information on containers: The container material is expected to be stainless steel. Container choice may be influenced by Transport Regulations at the time of final site clearance. Likely conditioning matrix: Other information: Blast Furnace Slag / Ordinary Portland Cement The waste is to be encapsulated. Conditioned density (t/m³): Conditioned density comment: ~3.0 The conditioned wasteform density assumes that the waste will be encapsulated. Other information on conditioning: The waste will be in baskets placed in the waste packages. Baskets of different Final Dismantling & Site Clearance ILW wastes may be in the same waste package. Should encapsulation not be required, the density of the conditioned waste product would be about 1.2 t/m3. Opportunities for alternative disposal routing: | Baseline Opportunity Management Route Management Route | Stream
volume (%) | Estimated Date that Opportunity will be realised | Opportunity
Confidence | Comment | |--|----------------------|--|---------------------------|---------| |--|----------------------|--|---------------------------|---------| #### **RADIOACTIVITY** Source: Activation of the stainless steel and impurities. Uncertainty: The values quoted were derived by calculation from available material specification and are indicative of the activities that are expected. The major source of uncertainty is the impurity levels. Definition of total alpha and total beta/gamma: Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'. Measurement of radioactivities: The specific activities were estimated from neutron activation calculations of the material and its impurities and its impurities. Other information: The activities quoted are those at 85 years after reactor shutdown, i.e. in 2075. There may be some contamination by Cs137. | Mean radioactivity, TBq/m³ | | | Mean radioactivity, TBq/m³ | | | | | | | |----------------------------|-------------------|-------------------|----------------------------|-------------------|-----------|----------------------|-------------------|--------------------|-------------------| | Nuclide | Waste at 1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | Nuclide | Waste at
1.4.2022 | Bands and
Code | Future
arisings | Bands and
Code | | H 3 | 1 | | | 8 | Gd 153 | | | | 8 | | Be 10 | | | | 8 | Ho 163 | | | | 8 | | C 14 | | | 1.79E-02 | CC 2 | Ho 166m | | | | 8 | | Na 22 | | | | 8 | Tm 170 | | | | 8 | | Al 26 | | | | 8 | Tm 171 | | | | 8 | | CI 36 | | | 7.29E-07 | CC 2 | Lu 174 | | | | 8 | | Ar 39 | | | 7.23L-07 | 8 | Lu 176 | | | | 8 | | Ar 42 | | | | 8 | Hf 178n | | | | 8 | | K 40 | | | | | Hf 182 | | | | 8 | | | | | | 8 | | | | | | | Ca 41 | | | | 8 | Pt 193 | | | 4 405 07 | 8 | | Mn 53 | | | | 8 | TI 204 | | | 1.18E-07 | CC 2 | | Mn 54 | | | | 8 | Pb 205 | | | | 8 | | Fe 55 | | | 2.33E-08 | CC 2 | Pb 210 | | | | 8 | | Co 60 | | | 1.02E-04 | CC 2 | Bi 208 | | | | 8 | | Ni 59 | | | 4.54E-02 | CC 2 | Bi 210m | | | | 8 | | Ni 63 | | | 2.8E+00 | CC 2 | Po 210 | | | | 8 | | Zn 65 | | | | 8 | Ra 223 | | | | 8 | | Se 79 | | | | 8 | Ra 225 | | | | 8 | | Kr 81 | | | | 8 | Ra 226 | | | | 8 | | Kr 85 | | | | 8 | Ra 228 | | | | 8 | | Rb 87 | | | | 8 | Ac 227 | | | | 8 | | Sr 90 | | | | 8 | Th 227 | | | | 8 | | Zr 93 | | | | 8 | Th 228 | | | | 8 | | Nb 91 | | | | 8 | Th 229 | | | | 8 | | Nb 92 | | | | 8 | Th 230 | | | | 8 | | Nb 93m | | | | 6 | Th 232 | | | | 8 | | | | | 0.405.05 | | Th 234 | | | | 8 | | Nb 94 | | | 8.49E-05 | CC 2 | Pa 231 | | | | 8 | | Mo 93 | | | 4.93E-05 | CC 2 | Pa 233 | | | | 8 | | Tc 97 | | | | 8 | | | | | | | Tc 99 | | | 1.01E-05 | CC 2 | U 232 | | | | 8 | | Ru 106 | | | | 8 | U 233 | | | | 8 | | Pd 107 | | | | 8 | U 234 | | | | 8 | | Ag 108m | | | 5.98E-06 | CC 2 | U 235 | | | | 8 | | Ag 110m | | | | 8 | U 236 | | | | 8 | | Cd 109 | | | | 8 | U 238 | | | | 8 | | Cd 113m | | | | 8 | Np 237 | | | | 8 | | Sn 119m | | | | 8 | Pu 236 | | | | 8 | | Sn 121m | | | | 8 | Pu 238 | | | | 8 | | Sn 123 | | | | 8 | Pu 239 | | | | 8 | | Sn 126 | | | | 8 | Pu 240 | | | | 8 | | Sb 125 | | | | 8 | Pu 241 | | | | 8 | | Sb 126 | | | | 8 | Pu 242 | | | | 8 | | Te 125m | 1 | | | 8 | Am 241 | | | | 8 | | Te 127m | 1 | | | 8 | Am 242m | | | | 8 | | I 129 | | | | 8 | Am 243 | | | | 8 | | Cs 134 | 1 | | | 8 | Cm 242 | | | | 8 | | | 1 | | | 8 | Cm 243 | | | | 8 | | Cs 135 | | | | | Cm 244 | | | | 8 | | Cs 137 | 1 | | | 6 | Cm 245 | | | | 8 | | Ba 133 | | | | 8 | Cm 246 | | | | 8 | | La 137 | 1 | | | 8 | Cm 248 | | | | 8 | | La 138 | 1 | | | 8 | | | | | | | Ce 144 | | | | 8 | Cf 249 | | | | 8 | | Pm 145 | | | | 8 | Cf 250 | | | | 8 | | Pm 147 | 1 | | | 8 | Cf 251 | | | | 8 | | Sm 147 | 1 | | | 8 | Cf 252 | | | | 8 | | Sm 151 | | | | 8 | Other a | | | | | | Eu 152 | | | | 8 | Other b/g | | | | | | Eu 154 | 1 | | | 8 | Total a | 0 | | 0 | | | Eu 155 | | | | 8 | Total b/g | 0 | | 2.86E+00 | CC 2 | | - | 1 | | | - | | | ļ | | | ### Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000 Note: Bands quantify uncertainty in mean radioactivity. - Measured activity Derived activity (best estimate) Derived activity (upper limit) - 4 Not present 5 Present but not significant - 6 Likely to be present but not assessed 7 Present in significant quantities but not determined - 8 Not expected to be present in significant quantity