SITE	Berkeley				
SITE OWNER	Nuclear Decomr	nissioning Authority			
WASTE CUSTODIAN	Magnox Limited				
WASTE TYPE	LLW				
Is the waste subject to Scottish Policy:	No				
WASTE VOLUMES			Reported		
Stocks:	At 1.4.2022		0 m ³		
Future arisings -	1.4.2022 - 31.3.2	2034	184.3 m³		
Total future arisings:			184.3 m³		
Total waste volume:			184.3 m³		
Comment on volumes:	-				
Uncertainty factors on	Stock (upper):	x		Arisings (upper)	x 1.2
volumes:	Stock (lower):	x		Arisings (lower)	x 0.8
WASTE SOURCE	General LLW wa main source of the examination (PIE Reactor (AGR) p sent to the Berke boundaries were streams along w	aste arisings from ini he waste is from glov E) of fuel, reactor gra power stations throug eley Centre ILW stor e changed, and the S ith some waste from	tial decomm ve boxes, ca uphite and st ghout the UK e. Following chielded Area the ILW sto	issioning of the Berves and cells used eel from Magnox a Following PIE and de licence of the E a arisings were incl re.	rkeley Centre. The for post irradiation nd Advance Gas d analysis, items were Berkeley Centre the site uded in these waste

PHYSICAL CHARACTERISTICS

General description:	Contaminated structural material (e.g. concrete and pond scabblings), fixtures, fittings and equipment comprised of mostly metals and plastics and associated secondary waste from decommissioning. Items include ladders, tooling, scaffolding, cabling, ventilation equipment. Laboratory waste from PIE and analysis of fuels, graphite and steels (i.e. consumable laboratory items) along with waste from remote inspection activities at the Littlebrook site. The predominant materials are metal, plastics and rubber. Redundant equipment utilised in PIE and analysis of fuel, graphite and steels. The predominant materials is metal, with small quantities of plastics and rubble. Items include cave cans, pipework, tooling. Waste from contamination control procedures applied during the extraction of primary decommissioning waste at the Berkeley Centre, including paper, cotton and plastics.
Physical components (%wt):	Metal (87%), Concrete/Rubble (2%), Biodegradable (non-putrescibles) (4%), Plastics (Halogenated) (1%), Plastics (non-halogenated) (2%), Rubber (1%), Wood (2%), Others (1%).
Sealed sources:	The waste does not contain sealed sources.
Bulk density (t/m ³):	~4.42
Comment on density:	Derived from WCH mass / volume (1MXN-1BNL-0-WCH-0-4683 V4)
CHEMICAL COMPOSITION	N

General description and components (%wt):	A variety of materials including Metal (87%), Concrete/Rubble (2%), Biodegradable (non- putrescible) (4%), Plastics (Halogenated) (1%), Plastics (non-halogenated) (2%), Rubber (1%), Wood (2%), Others (1%).
Chemical state:	Neutral
Chemical form of radionuclides:	 H-3: The chemical form of tritium has not been assessed. C-14: The chemical form of carbon 14 has not been assessed. Cl-36: The chemical form of chlorine 36 has not been assessed. Ra: The radium isotope content is expected to be insignificant. Th: Thethorium isotope content is expected to be insignificant. U: The chemical form of uranium isotopes has not been assessed. Pu: The chemical form of plutonium isotopes has not been assessed.
Metals and alloys (%wt):	Some items may have been cut for packaging but an assessment of item dimensions has not been made.

		(%wt)	Type(s) / Grade(s) with proportions	% of total C14
	Stainless steel	~37.7	Assorted stainless steel including: Pipework, tooling, fixtures, fittings, beams, cave-cans, and other miscellaneous plant items and equipment	uolivity
	Other ferrous metals	~25.1	Drums, Pipework, tooling, fixtures, fittings, beams, cave-cans, and other miscellaneous plant items and equipment.	
	Iron			
	Aluminium	~2.0	Ladders, scaffolding, HEPA filters and miscellaneous items and equipment	
	Beryllium			
	Cobalt			
	Copper	~2.4	Copper cabling	
	Lead	~19.7	Lead shielding blocks	
	Magnox/Magnesium			
	Nickel			
	Titanium			
	Uranium			
	Zinc	~0.04	Miscellaneous galvanised items, HEPA filters	
	Zircaloy/Zirconium			
	Other metals	NE		
Organics (%)	wt): Some organic mater	ials may b	e present.	
		(%wt)	Type(s) and comment	% of total C14 activity
	Total cellulosics	~2.0		
	Paper, cotton	~0		
	Wood	~2.0		
	Halogenated plastics	~1.0	Plastic sheeting, tents, bags, packaging, PPE	
	Total non-halogenated plastics	~2.0		
	Condensation polymers	~1.0	Plastic wrap, tents, bags, packaging, containers, PPE	
	Others	~1.0	Plastic wrap, tents, bags, packaging, containers, PPE	
	Organic ion exchange materials	0		
	Total rubber	~1.0		
	Halogenated rubber	~1.0		
	Non-halogenated rubber	NE		
	Hydrocarbons			
	Oil or grease			
	Fuel			
	Asphalt/Tarmac (cont.coal tar)			
	Asphalt/Tarmac (no coal tar)			
	Bitumen			

2022 Inventory

WASTE STREAM

9R102

Berkeley Centre Decommissioning : Primary LLW

Others..... Other organics..... NE Other materials (%wt): (%wt) Type(s) and comment % of total C14 activity Inorganic ion exchange materials.. 0 Inorganic sludges and flocs..... 0 Soil..... NE Brick/Stone/Rubble..... NE Cementitious material..... ~2.0 Of which circa 0.02% is encapsulated sludge Sand..... Glass/Ceramics..... ~0.14 Lagging NE Graphite..... Desiccants/Catalysts..... Asbestos..... ~0.81 Non/low friable..... ~0.27 Equal portions of white/brown/blue asbestos assumed. Lagging / Contaminated clothing / Insulation Board Moderately friable..... Equal portions of ~0.27 white/brown/blue asbestos assumed. Lagging / Contaminated clothing / Insulation Board ~0.27 Equal portions of Highly friable..... white/brown/blue asbestos assumed. Lagging / Contaminated clothing / Insulation Board 0 Free aqueous liquids..... Free non-aqueous liquids..... 0 Powder/Ash..... 0 Inorganic anions (%wt): Not fully assessed. (%wt) Type(s) and comment Fluoride..... NE Chloride..... NE lodide..... NF Cyanide..... NE Carbonate..... NE Nitrate..... NE Nitrite..... NE Phosphate..... TR Sulphate..... NE Sulphide..... NE

Materials of interest for waste acceptance criteria:

Less than 1% by weight asbestos is present

	(%w
Combustible metals	0
Low flash point liquids	0
Explosive materials	0
Phosphorus	0
Hydrides	0
Biological etc. materials	0
Biodegradable materials	Ρ
Putrescible wastes	0
Non-putrescible wastes	Ρ
Corrosive materials	0
Pyrophoric materials	0
Generating toxic gases	0
Reacting with water	0
Higher activity particles	
Soluble solids as bulk chemical compounds	

t) Type(s) and comment

Hazardous substances / non hazardous pollutants:

Approximately 1% by weight asbestos is present. Trace amounts of barium and bromine in lamps <1m3.

(%wt) Type(s) and comment

Acrylamide..... Benzene..... Chlorinated solvents..... Formaldehyde..... Organometallics..... Phenol..... Styrene..... Tri-butyl phosphate..... Other organophosphates..... Vinyl chloride..... Arsenic..... Barium..... Boron..... Boron (in Boral)..... Boron (non-Boral)..... Cadmium..... Caesium..... Selenium..... Chromium..... Molybdenum..... Thallium..... Tin..... Vanadium.....

2022 Inventory

0

Mercury compounds		
Others		
Electronic Electrical Equipment (EEE)		
EEE Type 1		
EEE Type 2		
EEE Type 3		
EEE Type 4	Ρ	100 off flourescent light tubes @ 0.24 kg each = 24.00 kg
EEE Type 5		
Complexing agents (%wt): Yes		
	(%wt)	Type(s) and comment
EDTA		
DPTA		
NTA		
Polycarboxylic acids		
Other organic complexants	TR	Citrates from Decon90
Total complexing agents	TR	
Potential for the wests to Not yet determined	In 9 of its	alf not a Divugata atraam may include Dia

Potential for the waste to
contain discrete items:Not yet determined.In & of itself not a DI; waste stream may include DIs
(notably any stainless steel components)

TREATMENT, PACKAGING AND DISPOSAL

Treatment	On-site / Off site	Stream volume %
Low force compaction	On-site	4.0
Supercompaction (HFC)	Off-site	4.0
Incineration	Off-site	46.0
Solidification		
Decontamination		
Metal treatment	Off-site	34.0
Size reduction		
Decay storage		
Recyling / reuse		
Other / various		
None		16.0

Comment on planned treatments:

Planned on-site / off-site

treatment(s):

Disposal Routes:

~15% of this waste stream is expected to be sent to Landfill as VLLW .

Disposal Route	Stream volume %	Disposal density t/m3
Expected to be consigned to the LLW Repository	5.0	4.4
Expected to be consigned to a Landfill Facility	15.0	4.4
Expected to be consigned to an On-Site Disposal Facility		
Expected to be consigned to an Incineration Facility	46.0	0.40
Expected to be consigned to a Metal Treatment Facility	34.0	1.4
Expected to be consigned as Out of Scope		
Expected to be recycled / reused		
Disposal route not known		

Classification codes for waste expected to be consigned to a landfill facility:

17 04 07, 17 01 01, 17 06 01*

Upcoming (2022/23-2024/25) Waste Routing (if expected to change from above):

Disposal Pouto	Stream volume %			
	2022/23	2023/24	2024/25	
Expected to be consigned to the LLW Repository Expected to be consigned to a Landfill Facility Expected to be consigned to an On-Site Disposal Facility Expected to be consigned to an Incineration Facility Expected to be consigned to a Metal Treatment Facility Expected to be consigned as Out of Scope Expected to be recycled / reused Disposal route not known				

Opportunities for alternative disposal routing:

Baseline Management Route	Opportunity Management Route	Stream volume (%)	Estimated Date that Opportunity will be realised	Opportunity Confidence	Comment
-	-	-	-	-	-

-

Waste Packaging for Disposal:

	Container		Stream volume %	Waste loading m ³	Number of packages
	 1/3 Height IP-1 ISO 2/3 Height IP-2 ISO 1/2 Height WAMAC IP-2 ISO 1/2 Height IP-2 Disposal/Re-usable ISO 2m box (no shielding) 4m box (no shielding) Other 		~4.0 ~1.0	43.2 10	< 1 < 1
Othe	er information:	It is likely that this waste will be loading volume for WAMAC 1/2 you can low force compact two litre/0.2m3 drum (400 litres/0.4m height ISO, each drum can be s so therefore we can get 3 x the disposal container (43.2m3).	placed in a contai height ISO is calc times the normal v n3), you can then uper-compacted t amount of un-com	ner with other LLV culated based on t volume of waste in fit 36 drums (14.4 o a 1/3 of its origir spacted drums into	V. 43.2m3 he fact that to a 200 m3) into a ½ nal volume o the final
Was	te Planned for Disposal	at the LLW Repository:			
Con	tainer voidage:	ner voidage: No significant inaccessible voidage is expected to be present.			
Was Forn	te Characterisation n (WCH):	CharacterisationThe waste meets the LLWR's Waste Acceptance Criteria (WAC)./CH):The waste has a current WCH.Inventory information is consistent with the current WCH.			
Was disp year	te consigned for osal to LLWR in of generation:	Yes.			
Non	-Containerised Waste for	In-Vault Grouting: (Not applic	cable to this waste	stream)	
Stre	am volume (%):				
Was	te stream variation:	-			
Bou	nding cuboidal volume:				
Inac	cessible voidage:	-			
Othe	er information:	-			
RA	DIOACTIVITY				

Source:	Contamination of the materials.
Uncertainty:	Only approximate estimates have been made of specific activities from measured activity on waste drums and the use of fingerprints.
Definition of total alpha and total beta/gamma:	Where totals are shown on the table of radionuclide activities they are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma'.
Measurement of radioactivities:	Data based on 1MXN-1BNL-0-WCH-0-4683 V4 decayed by two years from April 2020 to April 2022 to the start date of arisings. The fingerprint for Berkeley 9R102 was originally derived from five sources; Magnox and AGR Graphite, AGR Fuel Waste, General Magnox Trash Steel. The waste inventory was derived from fingerprints based on multiple swab samples and bulk samples.
Other information:	No radionuclides other than those listed as possibly being present are expected to be significant.

	Mean radioactivity. TBo/m ³					Mean radioactivity. TBg/m ³			
	Waste at	Bands and	Future	Bands and		Waste at	Bands and	Future	Bands and
Nuclide	1.4.2022	Code	arisings	Code	Nuclide	1.4.2022	Code	arisings	Code
H 3			1.48E-06	CC 2	Gd 153				8
Be 10			· · · -	8	Ho 163				8
C 14			2.39E-07	CC 2	Ho 166m				8
Na 22				8	Tm 170				8
AI 26				8	Im 1/1				8
CI 36			5.8E-07		LU 174				0 9
Ar 12				0	Lu 170 Hf 178n				0 8
K 40				8 8	Hf 182				8
Ca 41				8	Pt 193				8
Mn 53				8	TI 204				8
Mn 54				8	Pb 205				8
Fe 55			1.44E-07	CC 2	Pb 210				8
Co 60			3.46E-07	CC 2	Bi 208				8
Ni 59				8	Bi 210m				8
Ni 63			6.74E-06	CC 2	Po 210				8
Zn 65				8	Ra 223				8
Se 79				8	Ra 225				8
Kr 81				8	Ra 226				8
Kr 85				8	Ra 228				8
Rb 87				8	Ac 227				8
Sr 90			1.13E-04	CC 2	Th 227				8
Zr 93				8	Th 228				0
ND 91				8	Th 230				о 8
ND 92 Nb 02m				8	Th 232				8
ND 9311			7 565 08		Th 234				8
Mo 93			7.502-00	8	Pa 231				8
Tc 97				8	Pa 233				8
Tc 99				8	U 232				8
Ru 106				8	U 233				8
Pd 107				8	U 234				8
Ag 108m			1.4E-07	CC 2	U 235				8
Ag 110m				8	U 236				8
Cd 109				8	U 238				8
Cd 113m				8	Np 237				8
Sn 119m				8	Pu 236				8
Sn 121m				8	Pu 238			3.46E-06	CC 2
Sn 123				8	Pu 239			1.21E-06	CC 2
Sn 126				8	Pu 240			1.59E-06	
Sb 125			1.92E-08	CC 2	Pu 241			4.83E-05	
Sb 126				8	PU 242			6 07E 06	
Te 125m			4.82E-09		Am 241			0.07 -00	00 2
1e 12/m				8	Am 242m				8
Cs 134				0	Cm 242				8
Cs 135				8	Cm 243			1.6E-08	CC 2
Cs 137			1 18F-04	CC 2	Cm 244			7.72E-07	CC 2
Ba 133			3.95E-08	CC_2	Cm 245			-	8
La 137			0.002 00	8	Cm 246				8
La 138				8	Cm 248				8
Ce 144				8	Cf 249				8
Pm 145				8	Cf 250				8
Pm 147			2.41E-07	CC 2	Cf 251				8
Sm 147				8	Cf 252				8
Sm 151				8	Other a				
Eu 152			1.86E-07	CC 2	Other b/g				
Eu 154			5.67E-07	CC 2	Total a	0		1.31E-05	CC 2
Eu 155			7.66E-08	CC 2	Total b/g	0		2.89E-04	CC 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3

C a factor of 10 D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in mean radioactivity.

Code

1 Measured activity

2 Derived activity (best estimate)

3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined

8 Not expected to be present in significant quantity